
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 8, AUGUST 2015 1125

Visual Object Tracking by Structure
Complexity Coefficients
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Abstract—Appearance change of moving targets is a
challenging problem in visual tracking. In this paper, we present
a novel visual object tracking algorithm based on the observation
dependent hidden Markov model (OD-HMM) framework. The
observation dependency is computed by structure complexity
coefficients (SCC) which is defined to predict the target
appearance change. Unlike conventional methods addressing the
appearance change problem by investigating different online
appearance models, we handle this problem by addressing
the fundamental reason of motion-related appearance change
during visual tracking. Based on the analysis of motion-related
appearance change, we investigate the relationship between the
structure of the object surface and the appearance stability.
The appearance of complex structural regions is easier to
change compared with that of smooth structural regions with
object moving. Based on this, we define SCC to predict the
appearance stability of moving objects. Different from the
standard HMM-based tracking algorithms where observations
between different frames are assumed to be independent, we
consider the observation dependency between consecutive frames
with the information provided by SCC. Moreover, we present a
novel outlier removing method in appearance model updating
which helps to avoid error accumulation. Experimental results on
challenging video sequences demonstrate that the proposed visual
tracking algorithm with OD-HMM and SCC achieves better
performance than existing related tracking algorithms.
Index Terms—Appearance stability, moving target, object

tracking, structure complexity coefficients (SCC).

I. INTRODUCTION

V ISUAL object tracking is an important technique in smart
vision systems such as visual surveillance, robot navi-

gation and human-computer interaction. Given the target state
(e.g., location and size) in the first frame of a video clip, the aim
of visual tracking is to estimate the target states in subsequent
frames. In most of the recent related studies, object tracking
process is modelled as a recursive loop of two steps under the
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HMM framework: 1) predicting some candidates of the target
in the incoming frame based on the estimated target state in the
previous frame, and 2) choosing the most proper candidate as
the estimated target based on the appearance likelihood. These
two steps are referred to motion model and appearance model
respectively during the tracking process [1]–[6].
Generally, since the target appearance does not change sig-

nificantly during tracking, the target could be accurately local-
ized in most of the frames with a relatively high appearance
likelihood. However, when the target appearance changes dra-
matically during tracking, the “target candidate” (the candidate
which supposed to be the target) would be assigned with a low
likelihood. This makes the “target candidate” not distinguish-
able with other “non-target candidates” and then the tracker
might drift.
With 11 normal attributes listed in the study [7] whichmay af-

fect the tracking performance, target appearance change during
tracking is mainly correlated with motion related attributes (i.e.,
rotation, deformation and motion blur) and illumination vari-
ation. To address the problem caused by illumination varia-
tion, existing studies have investigated illumination invariant
features such as “adjacent pixels color ratio” [8], sparse repre-
sentation [4], locality sensitive histogram [5], etc. In this paper,
we mainly focus on handling the problem of appearance change
caused by target motion during visual object tracking. To deal
with this problem, several approaches have been proposed such
as finding stable local features [9], [10], building appearance
subspace robust to multi-view [1], learning part-based appear-
ance models [11]–[13], etc. Although there are some previous
studies trying to address the appearance change problem, the
fundamental reason to appearance change, namely, motion is
neglected by most of these studies.
When analysing video sequences, we find that the appearance

change of moving targets is caused by pixel replacement in a
local region. For example, with motion blur caused by fast mo-
tion, original target pixels would be replaced by blurred pixels.
Moreover, deformation and rotation of the target also result in
pixel replacement by its neighbors. Based on our observation
and analysis, we find that, for moving targets, the probability of
appearance change in complex structural regions is higher than
that in smooth structural regions. By assuming the target could
be reconstructed by the appearance model, the appearance like-
lihood can be computed as the summation of of pixel/region-
wise reconstruction error [1], [2], while large appearance change
would lead to large reconstruction error. Hence, in order to en-
hance the likelihood of the “target candidate”, we compensate
the reconstruction errors with the appearance change prediction,
by considering the reconstruction error in complex structural
regions less than that in smooth regions. This strategy is also
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similar to contrast masking of the human visual system (HVS),
where the HVS is more sensitive to the contrast in smooth re-
gions than that in complex structural regions [14], [15].
In this study, starting from analysing the motion related ap-

pearance change, we define Structure Complexity Coefficients
(SCC) to predict the target appearance stability (negatively cor-
related to appearance change). Since target appearances in sev-
eral consecutive frames are expected to be quite similar, we pre-
dict the SCC of the target with the estimated target appearance
in last several frames. In the proposed tracking framework, the
target appearance likelihood depends upon not only the recon-
struction error computed from the appearance model, but also
the appearance stability estimated based on the target appear-
ance in the previous frames. By incorporating this dependency
with the standard HMM based tracking framework, we design
an Observation Dependent HMM (OD-HMM) tracking frame-
work with SCC.
In essence, we design an SCC based tracking algorithm

(SCCT) under OD-HMM framework where the observation
dependency is computed based on SCC. An appearance model
with SCC-Gaussian-Laplacian distance is built to measure the
likelihood of candidates predicted by motion model. The Lapla-
cian noise has been demonstrated to be effective in handling
outliers for object tracking [2], [16], [11]. In this study, we also
present a novel model updating method to remove the outliers,
which can address the problem from the error accumulation in
appearance model updating. Experimental results demonstrate
the effectiveness of both the proposed SCC and the outlier
removing methods.

II. RELATED WORKS

Visual object tracking is an important research topic in com-
puter vision and has been studied for years. In this section, we
briefly summarize the studies which are closely related to our
research work. A more thorough survey can be referred to [17].
HMM-based tracking: By defining the target location as a

hidden state and assuming that the observations are only related
to the hidden state, HMM simplifies the tracking task to a se-
quential Maximum a Posterior (MAP) estimation problem. Par-
ticle Filter has been widely used in solving the sequential MAP
estimation problem [1], [2], [18]. The Particle Filter provides a
framework to estimate the posterior probability sequentially by
several random particles and corresponding weights, regardless
of the distribution of prediction and observation functions. The
independent assumption of observations allows low computa-
tional complexity in appearance likelihood computation. How-
ever, these studies neglect the temporal relationship between
target appearances in consecutive frames. In this study, the ob-
servation dependency is used as an important cue in computing
the appearance likelihood besides the appearance model. We
build a more robust Particle Filter based tracker by introducing
the observation dependency into conventional HMM tracking
framework.
Observation dependency in HMM: In the study [19], by

expressing the multiple observation probability as a combi-
nation of individual observation probabilities, the observation
dependence property is characterized by combinatorial weights.
To characterize the observation dependency in visual object
tracking, AR(Autoregressive)-HMM [20] was proposed where

the dependency between consecutive frames is trained frame
by frame based on all the previous estimated target appear-
ances. This approach may be effective in tracking targets with
repetitive movements (e.g., like shaking, running back and
forth, and rotation), since the target appearance in these cases is
predictable. However, in more general cases where the targets
are with unpredictable movements, it is very hard to predict
how the target appearance will change in the incoming frame.
Moreover, the dependency training algorithm increases the
computational complexity greatly. It is reported in [20] that
it requires 8 second per frame in processing (implemented
by C codes with Intel Q9550 2.83 GHz CPU). In this paper,
the appearance stability is predicted by analysing the target
structure complexity. We predict where the appearance will
change rather than how the appearance will change, which is
independent to the target motion. Thus, the proposed SCC is
more efficient and reasonable in appearance stability estimation
if we don’t have the pre-knowledge of the target movement in
the coming frames.
Outlier modelling in appearance model: Outliers refer to

unexpected appearance data which are different greatly from
the existing observed target appearance. The outlier can be in-
troduced by occlusion, sudden illumination variation, etc. And
it affects the robustness of the appearance model negatively.
In [21], the appearance model updating problem is analysed
and it claims that model updating with no error control would
cause drifting if error accumulates during tracking. In [22], an

appearance model is proposed. The refers to the ‘lost’
component which is used to model the outlier probability; the
models the temporal appearance stability; and the stands

for wandering model which can be used when the stable model
is not available. When an observation is detected with higher
probability to be outlier, the observation contributes less to
the stable appearance model of the target. Semi-supervised
learning [23] is applied in tracking to increase the stability of
the appearance model during model updating. P-N learning is
proposed in [24] and it is proved effective in controlling the
error accumulation during tracking by removing the mislabeled
training samples. The Gaussian-Laplacian noise is facilitating
in outlier detection [2]; pixels with non-zero Laplacian noise
are detected as outliers and interpolated by the mean value in
model updating. In the proposed SCCT, a novel outlier removal
approach is designed. With the assumption of SCC-weighted
Gaussian-Laplacian noise in the appearance model, we decom-
pose the target appearance into three parts: subspace (learnt
from previous target appearance), Gaussian noise (valid appear-
ance change), and Laplacian noise (invalid appearance change).
Then, we only eliminate the invalid appearance change repre-
sented by Laplacian noise during appearance model updating
and keep the valid appearance change represented by Gaussian
noise at the same time.

III. APPEARANCE STABILITY PREDICTION BY STRUCTURE
COMPLEXITY COEFFICIENTS

With rotation, deformation or motion blur, the target appear-
ance would change from time to time during tracking. As target
appearance changes, the reconstruction likelihood of target de-
grades and, hence, the tracked target would be lost. In order
to enhance the reconstruction likelihood of moving targets, we
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Fig. 1. Reconstruction error map and SCC with target movement: (a), (e), and
(i) are targets to be tracked; (b), (f), and (j) are targets with motion blur and
rotation in th frame; (c), (g), and (k) are pixel-wise reconstruction error maps
in th frame, the dark region indicates less error and the light region indicates
large error; (d), (h), and (l) are computed SCCs based on the estimated target ap-
pearance in th frame, the dark region indicates complex structural region
which takes high probability to change its value with motion and the light region
indicates smooth structural regions which will be more stable with motion. The
reconstruction error map and SCC are somehow negatively correlated, which
means the SCC can be used to predict and compensate the reconstruction error
caused by target motion. (a) Box. (b) Motion blur (c) Recon. error. (d) SCC.
(e) Tiger1. (f) Rotation. (g) Recon. error. (h) SCC. (i) Tiger1. (j) Deformation.
(k) Recon. error. (l) SCC.

propose SCC to predict the appearance stability of different re-
gions of the target. The proposed SCC is applied to compensate
the reconstruction error of the target. Thus, the likelihood of the
candidate is enhanced after compensation if it is supposed to be
the target. On the contrary, the likelihood of the candidate would
degrade if it doesn’t belong to the target.
Generally, the appearance change caused by motion can be

interpreted by pixel replacement in a local region. Therefore,
the reconstruction error caused by motion-related appearance
change in complex structural regions is larger than that in
smooth structural regions [as demonstrated in Fig. 1(c), 1(g) and
1(k)]. We here analyse appearance change from three types of
target motion (i.e., rotation, deformation and motion blur) and
derive SCC to predict the motion driven appearance change.

A. Appearance Change Caused by Rotation

Rotation, a kind of target-camera relative motion, occurs fre-
quently in object tracking. It is a global motion, which means
that almost all the pixels of the target shift together to the same
direction with the same degree. Here, we predict the pixel value
variation between consecutive frames and then model the ap-
pearance stability with target rotation.
Since rotation is a global movement of the target, by defining

a certain degree and direction (i.e., motion vector defined as
) of the rotation, the target pixels will shift together

and the pixel value variation at can be computed as

(1)

where is the image patch of the target, and is the
motion vector. By assuming a uniform distribution of the move-
ment within a maximum velocity, the variance (i.e., expected
square of the pixel value variation) of the pixel value between
consecutive frames can be computed as

(2)

where denotes the maximum moved distance between con-
secutive frames and is the number of pixels within the circle
region with radius of . With predicted variance , the
appearance stability with target rotation can be modelled
as a normal distribution

(3)

where is the parameter of Gaussian kernel.

B. Appearance Change Caused by Deformation
Another attribute of motion-related appearance change is de-

formation. In this case, the local motion varies between different
regions of target surface. For instance, the facial expression vari-
ation is a kind of deformation and the movements of different
regions of the face are independent. Since the local movement
is random, a pixel is more likely to be replaced by its closer
neighbors than further pixels. Thus, we model the local move-
ment between consecutive frames as a normal distribution.With
the predicted pixel value variation, we then compute the appear-
ance stability of the target with deformation.
By assuming a two-dimensional normal distribution of the

movement within a maximum velocity, the variance of the pixel
value between consecutive frames can be defined as

(4)

where denotes the maximum moved distance of
pixels between consecutive frames and

. With the predicted variance ,
the appearance stability with target deformation can be
modelled as a normal distribution

(5)

where is the parameter of Gaussian kernel.

C. Appearance Change Caused by Motion Blur
Motion blur caused by fast motion is also an important at-

tribute of motion-related appearance change. With fast motion
of target or camera, the blurred pixel is the fusion result of ra-
diant energy from a relatively large region [25]. However, the
blurred image cannot precisely reflect the original appearance
of the target. Consider a simple movement in direction, we
can predict the blurred pixel value as [25]

(6)
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where is the clear image the target, is the pre-
dicted blurred one, indicates the relative velocity, is
the shutter time, and is the relative moving distance during
this time interval.
From (6) we can predict that, the appearance variation from

motion blur in complex structural regions will be larger than that
in smooth structural regions. By assuming a uniform distribu-
tion of the motion direction, for simplicity, we compute
based on the average of motion blurred difference in four direc-
tions ( , , and )

(7)

where denotes the assumed moving distance between con-
secutive frames. With the predicted variance , the ap-
pearance stability with motion blur can be modelled as a
normal distribution

(8)

where is the parameter of Gaussian kernel.

D. Structure Complexity Coefficients
As analyzed in above sections, rotation results in pixel shift

by global motion; deformation results in pixel shift by local
motion; and blur results in pixel integration by fast global mo-
tion. Assuming these movements are independent, we formulate
the appearance stability of the moving target based on the joint
probability

(9)

where is the pixel-wise appearance variation probability of
moving target. With the larger value in , the related pixel
or region is more stable with target movement.
1) Motion Blur Detection: Visually, motion blur only occurs

with fast motion, and it can be detected by image analysis al-
gorithms [26], [27]. In this study, the parameter is calculated

Fig. 2. Illustration of and of a box and a face within the red bounding box
in different blur degrees. (a) , . (b) , .
(c) , . (d) , .

based on the blur detection results. With lager motion blur,
is set to be smaller to make contributing more to , and vice
versa.
Power Spectrum Slope has been proved promising in image

blur detection, due to the fact that a blurred image usually has
a large slope of power spectrum, while an unblurred image al-
ways corresponds to a small slope of power spectrum [28], [29].
Before computing power spectrum slope, we first compute the
power spectrum of the resized target patch (size of ) by
taking the squared magnitude after Discrete Fourier transform
(DFT)

(10)

where denotes the DFT coefficients of the target patch.
By representing in polar coordinates, we can obtain

. Then, is approximated by summing the power
spectrum over all directions

(11)

where is an amplitude scaling factor for each orientation and
is the frequency exponent, called Power Spectrum Slope [26].
Since the texture of different objects varies from each other,

even at the same degree of motion blur, may differs among
different objects. In order to get a unique metric for blur degree
among different objects, by assuming the objects are not blurred
in the first frame, we derive by comparing against (the
Power Spectrum Slope of the labeled target in frame and the
first frame, respectively)

(12)

Fig. 2 gives illustration of and of a box and a face with
different blur degrees. Since can well represent the blur de-
gree of targets despite object diversity, we compute inversely
proportional to

(13)

where is a small value to prevent dividing by zero or negative
value (we set to be 0.0001).
In this study, we set the values of and empirically in

experiments.
2) Normalization of SCC: The proposed SCC denotes the ap-

pearance stability of each pixel. When we apply it to compen-
sate the reconstruction error of the target, a normalization step
is necessary in order to make it comparable with conventional
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reconstruction error computationmethods. The pixel-wise prob-
ability of appearance stability is normalized as

(14)

where is SCC of the image patch , and is the number
of elements in . Fig. 1(d), 1(h) and 1(l) illustrate the com-
puted SCC, where dark region indicates small values in .

IV. STRUCTURE COMPLEXITY COEFFICIENTS TRACKER
In this section, we incorporate the proposed SCC with

a Gaussian-Laplacian (GL) noise based appearance model
under OD-HMM framework. Experimental results in
Section V demonstrate that the appearance model is more
robust to object moving by compensating the GL noise with
the proposed SCC.

A. Gaussian-Laplacian Noise Compensated by SCC
Laplacian noise assumption has been proved to be effective

in handling outliers in object tracking, especially in occlusion
scenarios [2], [16], [11]. With the same concern, we model the
target appearance vector (the target image patch) as a linear
model with Gaussian-Laplacian noise in this study

(15)

where is a -dimensional vector, denotes
the estimated -dimensional parameter vector and
represents the input datamatrix (the row vector is subspace basis
in this study). Specifically, indicates the Gaussian
noise term and indicates the Laplacian noise term.
The Gaussian noise is used to model small dense noise, while
the Laplacian noise aim to deal with outliers.
Based on the Gaussian-Laplacian reconstruction error as-

sumption, given an appearance vector and the subspace basis
, the parameter vector and Laplacian noise is computed

by maximizing the joint likelihood [2], [11]

(16)

where is the variance of the Gaussian error term, is reg-
ularization constant of Laplacian error terms and is the nor-
malization constant.
As shown in (16), each element in Gaussian or Laplacian

noises is treated equally in both and normalization. How-
ever, as analysed in Section III, regions with different struc-
ture complexities are with different appearance stabilities. If one
pixel is predicted to be unstable in motion, the noise correlated
to this pixel should be less considered during the calculation of
the appearance likelihood. Thus, the joint reconstruction likeli-
hood can be rewritten as follows by considering SCC:

(17)

where and are two diagonal matrixes, which denote
the error tolerance of each element in . Larger values in these
two matrixes indicate less error tolerance of the related element
in . We define and

(18)
(19)

where is the computed SCC in Section III-D and
converts to a diagonal matrix.
In order to maximize the joint likelihood in (17), the objective

function below is minimized:

(20)
to get the optimal solution: . We
solve the above object function based on weighted least square
criterion and regularization term on . Alg. 1 provides a de-
tailed description of the optimization process.

Algorithm 1: regularization with SCC

Input : An observation vector , matrix , diagonal
matrixes and

, a small constant and max
iteration times

Output: Estimated optimal and
1 Initialize and ;
2 ;
3 while Not convergence or do
4 Compute via ;
5 Compute via ;
6
7 end
8 , ;

B. SCC-Gaussian-Laplacian Versus Gaussian-Laplacian

Given a subspace basis and several predicted noisy target
candidates, we have to estimate the most reliable one based on
the distances between candidates’ appearance and the subspace.
The distance is usually defined to be inversely proportional to
the maximized joint likelihood with respect to the estimated co-
efficient

(21)

where denotes the appearance vector of the candidate and
is the estimated parameter.
With the SCC-GL noise assumption, we define the SCC-GL

distance from observation vector to the appearance model as
follows:

(22)
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Fig. 3. Moving tiger toy tracking illustration with GL and SCC-GL distances:
Before Frame 83, both GL and SCC-GL return good tracking results and the
same appearance model. In Frame 84, if GL distance is applied, the green
bounding box (bad candidate) returns a smaller distance value; if we use
SCC-GL distance, the red bounding box (good candidate) returns a smaller
distance value.

Moreover, in Least Soft-threshold Squares Tracking [2] and On-
line NMF tracking [11], the Gaussian Laplacian (GL) distance
is defined

(23)

Fig. 3 illustrates a tiger toy tracking example. In Frame 84 where
a moving tiger toy exists, the SCC-GL distance of the good
candidate (red bounding box) is smaller than the bad candidate
(green bounding box), while the GL distance of the good can-
didate is larger than the bad one.

C. Observation Dependent HMM
HMM is widely used in object tracking algorithms. Let be

the state variable of the target and be the image observation
(in principle, the entire image frame) at time .
Given from the first frame to the -th

frame, the aim is to estimate by MAP estimation

(24)

Taking the Bayes rule into consideration, the posterior proba-
bility can be decomposed as

(25)

In (25), since the observation and are given at time
and is independent to the state variable , we treat

as an normalization constant to all the possible .
In traditional HMM based tracking studies [1], [2], [18], the

observations between different frames are assumed to be inde-
pendent, and the appearance model is simpli-
fied to be in these studies. However, since the appear-
ance variation between consecutive frames is very limited due
to the short time interval, the appearance is somehow correlated

Fig. 4. First-order observation-dependent HMMbased on structure complexity
coefficients.

within certain number of frames. So, in order to derive the ap-
pearance observation dependency between consecutive frames,
we model the tracking process as an Observation Dependent
HMM (OD-HMM). Specifically, based on the target appearance
in the previous frames, SCC is calculated to predict the target ap-
pearance change at the -th frame. Thus, within the OD-HMM
tracking framework, the posterior probability can be computed
as

(26)
where denotes the motion model that predicts prior
probability of candidate state, and is the ap-
pearance model which is used to estimate the probability of the
observation given the target state and observations in previous
frames. In our current implementation, we only use the 1st-order
OD-HMM for simplicity. The 1st-order OD-HMM is illustrated
in Fig. 4. When modeling the probability of , we consider not
only the relationship between the target state and the observa-
tion at the current frame, but also the relationship between the
observations at consecutive frames.
Motion Model: In this work, we consider the affine trans-

formation to be the state variable,
where , denote x, y translation, rotation
angle, scale, aspect ratio, and skew direction at time . The
transition between consecutive frames is modelled as Gaussian
distribution with a diagonal covariance matrix

(27)

Appearance Model: Given the predicted target state , we de-
fine as the corresponding target appearance vector in the
image observation . Thus, is equivalent to the
likelihood of belonging to the target given the SCC predicted
from .

(28)

By assuming the target appearance is generated from a PCA
subspace, with Gaussian-Laplacian noise assumption, the target
appearance is formulated

(29)

where and are Gaussian and Laplacian noise term respec-
tively. The PCA subspace which represents the target appear-
ance is spanned by and centered at . We can define

. Given a target appearance candidate corresponding
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Fig. 5. Outlier elimination methods comparison: (a) the estimated target in
the current frame; (b) the mean of appearance vectors in the previous frame
which is a part of the observation model; (c) the result of replacing L-noise
pixels with existing appearance vector mean; and (d) the result of the proposed
method by subtracting L-noise. (a) Estimated observation. (b) Observations
mean. (c) Replace L-noise pixels. (d) Subtract L-noise.

to a predicted state variable , based on the discussions in
Sections IV-A and IV-B,we first solve the optimization problem

(30)

where denotes the -th candidate predicted by motion model,
and are obtained by (18) based on , where
is the estimated target appearance in the previous frame.

After the optimized and are obtained, the SCC-GL dis-
tance can be calculated

(31)

and the observation likelihood of the belonging to the target
is measured by

(32)

where is a constant controlling the variance of the Gaussian
Kernel.
Model Updating:As analysed in [2], [16], [11], the Laplacian

noise term represents the outliers. Thus, in order to eliminate
the negative effect of outlier, we reconstruct the estimated target
appearance vector by subtracting its related Laplacian noise
before model updating

(33)

where is the reconstructed appearance vector in -th
frame and is used for updating the subspace center and basis
matrix . The updating of and is based on incremental
principal component analysis (IPCA) [1].
Compared with outlier elimination method by replacing

the outlier pixels with mean values of the former appearance
vectors in LSST [2], our method makes the reconstructed
appearance vector more smooth and retains some variable
information from the Gaussian term as well. As shown in
Fig. 5(c), all the pixels with non-zero value in Laplacian term
are treated as outlier pixels and are replaced by existing mean
values, where the Gaussian noise information in all outlier
pixels are missing. The proposed method by subtracting the
appearance vector with Laplacian noise keeps the varying
appearance information which is represented by the Gaussian
noise term and removes the effect the Laplacian noise as well.

Fig. 6. SCC-GL and GL likelihood maps around the target in Tiger1 sequence.
(a) and (b) are taken from Frame 82, while (c) and (d) are taken from Frame
92. (a) GL likelihood. (b) SCC-GL likelihood. (c) GL likelihood. (d) SCC-GL
likelihood.

V. EXPERIMENTS

To evaluate the performance of OD-HMM and SCC in visual
object tracking, we implement a Structure Complexity Coeffi-
cients Tracker (SCCT) in MATLABR2012b. The regularization
constant is fixed to be 0.1 in the experiments. Simultaneously,
the variance and are fixed to be 0.1, while varies based
on the result from motion blur detection. Each image observa-
tion is resized to be a image patch and then reshaped to a

dimension observation vector. The maximum moving
distance between consecutive frames is empirically fixed to
be 4 in all the experiments. 16 eigenvectors are used to represent
the PCA subspace of the target appearance. In order to obtain
both efficiency and accuracy, the particle number is set as 600
and the PCA subspace is updated every 5 frames.
In this Section, we have conducted comparison experiments

between the proposed SCCT and eleven recent state-of-art al-
gorithms, including LSST [2], IVT [1], MTT [16], SCM [30],
MIL [10], LOT [31], TLD [24], BLUT [32],DT [33], Struck [34],
LSHT [5] and ART [20]. Moreover, to verify the contribution of
SCC alone, we implement SCCT-CI by fixing the SCCmatrix
to an identity matrix where the observation dependency is not
considered. All these algorithms are tested on thirteen published
benchmark sequences with motion-related challenges like rota-
tion, deformation and motion blur. And these tested sequences
cover most tracking scenarios including both indoor and out-
door, and various target types such as face, human, vehicles,
small objects, etc. Specifically, the sequences and ground truth
are collected from Visual Tracker Benchmark [7], BLUT dataset
[32], PROST dataset [35], LSST dataset [2] and BoBoT dataset
[36].

A. Distracter Elimination With SCC
Generally, the reason of losing tracking of targets is that the

estimated likelihood of distracter candidate is larger than that of
the target in cases of fast motion, appearance variation, etc. In
Fig. 6, we plot the likelihood map around the target candidate
in different frames, where and direction means number of
pixels shifting at the target position. It can be seen that with
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TABLE I
AVERAGE PER-FRAME CENTER LOCATION ERROR (IN PIXEL), THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE, AND GREEN FONTS

TABLE II
AVERAGE PER-FRAME OVERLAP RATIO, THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE, AND GREEN FONTS

GL likelihood alone, a second peak occurs around the target
in likelihood maps. By taking SCC into consideration, single
peak likelihood maps are produced where the second peak is
flattened, which means the negative effects from the distracter
are reduced.

B. Quantitative Evaluation

Two evaluation criteria are used in performance evaluation
of the proposed SCCT: center location error and overlap ratio.
Both of them are computed against the published manually la-
belled ground truth. Table I reports the average per-frame center
location error (in pixel) calculated as follows:

(34)

where is the total number of frames, is the center of
estimated bounding box and is center of the manually
labeled bounding box. In Table II, the average per-frame overlap
ratio is demonstrated

(35)

where is the total number of frames, and are the esti-
mated and ground truth bounding boxes respectively. It is clear
that in most sequences with motion-related challenges, the pro-
posed SCCT can obtain better performance than other existing
algorithms (in top three best performance among the compared
algorithms for most video sequences).
Since ART [20] is the most related work which considers

the observation dependency cue in HMM as well, we provide
further comparison between SCCT and ART on the public se-
quences mentioned in [20].1 The compared results of average
centre location error are shown in Table III.With the eight evalu-
ated video sequences, the proposed SCCT performs much better
on four sequences, while ART performs better on the rest four.
If we look into Tiger1, Tiger2, Sylvester and Shaking on which
ART shows better performance, all the targets in these sequences
are with repetitive movements.
ART can obtain good performance on these video sequences

by learning and clustering the previous target appearance. The
proposed SCCT provides a more general way in predicting the
target appearance change with no pre-knowledge of the target
movement in the coming frames.

1Since the code of ART is not released, comparison results of the algorithms
ART [20], VTD [37], MIL [10], IVT [1], and FRAGT [38] are obtained from
the study [20].
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TABLE III
AVERAGE PER-FRAME CENTER LOCATION ERROR (IN PIXEL), THE

BEST TWO RESULTS ARE SHOWN IN RED AND BLUE FONTS

Fig. 7. Tracking performance with separate attribute in SCC. R, D, and MB
denote rotation, deformation, and motion blur modelled SCC, respectively. IM
denotes the integrated SCC model which consider all the three listed motion
attributes and CI denotes that the SCC is set to be an identity matrix where
the observation dependency is not considered. Average of the OR on all tested
sequences are on the top of the figure.

The processing time of the proposed SCCT is tested on a PC
with Intel E5-1650 CPU (3.2 GHz) and 16 GB memory. It runs
at 5 frames per second on average.

C. Separated Model Tested in SCC

In this section, we test the proposed tracking algorithm by
model SCC with three motion attributes (rotation, deformation
and motion blur) separately to clarify the contribution of each
attribute to the final SCC. We conduct three more experiments
where the appearance stability in (9) are computed only
based on (rotation), (deformation) and (mo-
tion blur) respectively.
The comparison result is shown in Fig. 7. Overlap ratio (OR)

is used to measure the tracking performance.We can see that the
SCC with integrated models results in the best tracking perfor-
mance in most video sequences and obtain the highest average
OR. By only using rotation, deformation or motion blur in SCC
alone, the performance in tracking is worse than that using the
integratedmodel and even slightly worse than that without using
the SCC. This justifies that the integration of three attributes in
SCC is necessary in visual tracking. Since all the three attributes
of rotation, deformation and motion blur are very common in
video sequences, only considering one attribute in modelling
would possibly make the SCC sensitive to other attributes and
thus results in poor performance.

D. Qualitative Evaluation

In Fig. 8, we show some sample frames of the comparison
experiment between the proposed SCCT and some relevant al-
gorithms.2 For presentation clarity, we only draw the result of
somewell performed relevant algorithms, i.e., LSST [2], IVT [1],
SCM [30], TLD [24], BLUT [32], Struck [34] and LSHT [5].
Rotation: The sequences used in comparison experiments

with target rotation include both in-plane-rotation (e.g., David2
and FaceOcc2) and out-plane-rotation (e.g., Box, Lemming,
David, Tiger1, Car11 and CupTable). In can be seen from
Fig. 8 that, it is easy for most compared trackers to localize
the targets in the in-plane-rotation sequences. This is because
the in-plane-rotation can be treated as a 2-D motion. And
with orientation invariant features, the target appearance in the
bounding box doesn’t change much. However, for out-of-plane
rotation cases, the target appearance in the bounding box would
change and new appearance will be introduced. It is difficult
for the existing trackers to capture the target accurately. It is
demonstrated that in most rotation sequences, the proposed
SCCT can obtain accurate tracking results by predicting the
appearance change caused by rotation. Since out-of-plane rota-
tion only changes the target appearance in some local regions
between consecutive frames, with local sparse representation,
Struck and LSHT work well in some rotation sequences like
CupTable and Box. LSST and IVT also perform well in some
rotation sequences. The reason is that the PCA representation
is somehow robust in tracking multi-view objects. DT performs
quite well on Tiger due to the benefits from its large basin of
attraction and model updating frame by frame. There is no
model updating in BLUT and thus it loses tracking targets in
most rotation sequences.
Motion Blur:As indicated in Fig. 8, in sequences of Jumping,

Face, Box, Lemming, Body and Car4, the targets are blurred
with different degrees by fast motion of either target or camera,
which makes the target indistinguishable against its surround-
ings. The proposed SCCT can obtain more accurate and stable
tracking results on these sequences, since the SCC is able to pre-
dict the appearance change caused by motion blur. LSST is also
able to localize the target in most video frames. SCM performs
well in some blurred sequences benefiting from its discrimi-
native model which makes the blurred target more distinguish
against the background. However, it loses tracking when there
are other challenges co-existing, like occlusion and rotation in
Lemming and Box. BLUT is specifically designed for tracking
blurred objects, and it is demonstrated to perform well on Face
and Body. However, without model updating, it loses tracking
on other sequences with appearance variation.
Deformation: In sequences of Body and Caviar2 in Fig. 8, it

can be seen that the pose variation during walking causes the de-
formation of target pedestrians. Only the proposed SCCT, SCM
and LSST can localize the target in most frames from these two
video sequences. Struck and IVT can well localize the target
pedestrian in Caviar2 since their appearance models can adjust
to the appearance variation caused by deformation. However,
they lose tracking on Body when motion blur also exists.

2[Online]. Available: https://sites.google.com/site/sorsyuanyuan/home/odt-
project-page
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Fig. 8. Visual illustration of tracking results 13 sequences with motion blur, deformation, rotation, occlusion, illumination variation, etc. (a) Jumping with motion
blur. (b) Face with motion blur. (c) Box with motion blur, rotation and occlusion. (d) Lemming with motion blur, rotation and occlusion. (e) Body with motion
blur and deformation. (f) Caviar2 with occlusion and deformation. (g) David2 with rotation. (h) FaceOcc2 with rotation and occlusion. (i) David with rotation,
and illumination variation. (j) Tiger1 with rotation, occlusion and illumination variation. (k) Car4 with motion blur. (l) Car11 with illumination variation and
rotation. (m) CupTable with rotation.

Occlusion: Occlusion is one of the most common challenges
in visual object tracking. It is easy for trackers to drift if the
appearance model is not robust enough to occlusion. We test
the tracking algorithms on sequences (e.g., Box, Lemming,
FaceOcc2, Tiger1 and Caviar2) that the target is occluded
within some time during tracking. We also provide some
comparison samples in Fig. 8. It can be seen that the proposed
SCCT is able to obtain accurate tracking results on these se-
quences, since the Laplacian noise used in SCCT can eliminate
the outliers well during appearance model updating. LSST can
also obtain good results on some sequences. However, when
there are challenges like rotation and motion blur (e.g., Box
and Tiger1), it can not perform well stably. Since the local

features are effective in dealing with partial occlusion, it can be
seen that SCM, Struck and LSHT can also obtain good tracking
results on some sequences with partial occlusion (e.g., Box,
Caviar2 and FaceOcc2).
Illumination Variation: In Fig. 8,David, Tiger1 andCar11 are

three test sequences with illumination variation. Since the IPCA
representation is robust to illumination variation, the proposed
SCCT obtains accurate tracking results on these three sequences.
Similarly, LSST and IVT also produce good results on David
and Car11. However, both of them lose tracking when there is
motion-related challenges in sequence Tiger. Other algorithms
perform fairly on some sequences, but no one can get stable
tracking results on all the video sequences.
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VI. CONCLUSION

In this paper, we have proposed an OD-HMM based visual
object tracking algorithm by SCC to address the motion related
appearance change problems. The SCC is defined to predict the
appearance stability of moving targets. With SCC, we compen-
sate the reconstruction error while estimating the likelihood of
candidates with the appearance model, and the motion related
appearance change problem during tracking is addressed. Addi-
tionally, an effective model updating mechanism is investigated
to remove outliers. Both qualitative and quantitative compar-
ison experiments demonstrate the better performance of the pro-
posed OD-HMM based visual object tracking algorithm against
state-of-art tracking algorithms by providing more stable and
accurate results on the challenging video sequences.
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